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1.0 Introduction

Among the useful data outputs that mobile mapping generates are maps that show typical
pollution concentrations with high spatial resolution (“ Hyperlocal Maps”) across a specific
region, city, or community. These maps highlight typical concentrations over a defined
measurement period, either one year or one season (quarter), illustrating high and low pollution
concentrations at the street level. The maps are only one of many data products that can be
generated from mobile mapping, but represent a foundational data product that fills a critical
gap in understanding the spatial distribution of pollution. Aclima uses verified 1-Hz data to
produce concentration estimates aggregated at ~100 m road segment lengths, allowing
persistent pollution to be observed block by block in the user-defined geographic area. In
addition, the road segment data can also be spatially aggregated to larger geographic areas to
support analyses where it may be desirable to sacrifice spatial resolution in favor of improved
confidence in the reported values.

Aclima’s Data Quality Objectives for the creation of our hyperlocal maps are as follows:
● Produce yearly or seasonal estimates of ambient pollution concentrations from

measurements balanced over the contract time period and at diverse times of day and
night, weekdays and weekends, to adequately address seasonal and diurnal variations in
the data.

● Spatial distribution of data throughout the entire user-defined geographic area.
● Annual or seasonal estimates with credible intervals at the contracted spatial resolution

su�cient to enable assessment of the significance of di�erences in pollution levels.
● Enable pollution estimates at ~100 m road segments (sometimes referred to as

“address-level”).

We support the creation of hyperlocal maps for the following pollutants:
● O3, NO1, NO2, CO, CO2, CH4, PM2.5, and BC

Yearly or seasonal estimates of ambient pollution concentrations are not produced until data
collection is complete and the data are verified. These annual concentration estimates are
calculated using a data-driven modeling framework that uses the verified data for all passes on
that road segment and incorporates additional sources of data that provide information on

1 See Aclima Mobile Platform Quality Assurance document, Section 5.6.3 for details on the limitations of the NO
sensor, which has a relatively high detection limit relative to typical ambient concentrations.
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broad regional spatial trends and region-wide temporal trends, including, in some cases,
regulatory measurements from stationary monitoring sites. The results provide the best
estimate of the annual average concentration for each pollutant that retains true spatial
variability at the hyperlocal scale while accounting for biases that may result from the mobile
method sampling at di�erent times in di�erent locations. This high spatial resolution of
Aclima’s resulting data products supports identification of emissions sources as well as
information on neighborhood-level variability in air pollution concentrations to support
disparity analysis. The mobile mapping method is not a reference method designed to support
the National Ambient Air Quality Standards (NAAQS), which are supported by a network of
stationary reference monitors. Thus, data products from the mobile method do not support
assessment of compliance with NAAQS.

The Data Quality Objectives are used to define the sampling, measurement, data processing,
and analysis methodologies. This document describes the process Aclima follows moving from
the verified 1-Hz data to hyperlocal maps, including how we test for data that might not be valid
for inclusion in calculations or visualizations as well as our validation and verification processes.

2.0 Data processing

2.1 1-HZ data geolocation and aggregation into road segments

As Aclima’s cars drive along publicly accessible roads, sensors within the Aclima Mobile Note
(“AMN”) sample at a 1-second frequency. These measurements are associated in the Aclima
database with a specific 1-s Global Positioning System (GPS) time and location. The raw GPS
position information can at times be some meters from the road the car was driving due to the
fundamental uncertainty in the GPS measurement as well as external factors, such as tall
buildings, interfering with the ability of the GPS system to achieve a solid location fix. The
position of the raw GPS data is corrected to align with the route driven by the car, often termed
snapping to the road, reducing location uncertainty.

All 1-second measurements are assigned to a ~100m road segment (Figure 2) based on the
corrected location (latitude and longitude) of the data point. Each individual drive over a road
segment of ~100m in length is defined as a pass. Aclima calculates a mean (average) for all
1-Hz measurements taken for each pass of a specific segment (single pass mean) that is
assigned at the centroid of the segment. The number of 1-s measurements for each road
segment varies based on the length of the segment, the speed limit of the street, and tra�c
conditions during the drive pass. Using ~100-m road segments allows multiple data points to be
included in the calculation of the single pass mean, improving the estimate of the mean
pollution level at that location. The use of the single mean for a road segment serves to give
equal weight to all segments along a drive regardless of how many 1-second data points were
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collected in each segment. The result is time-resolved data at the segment level rather than
1-second.

The mean of the 1-second data points will be influenced by outliers, resulting in a collection of
single-pass means that accommodate a greater degree of variability due to sampling than a
collection of medians. Therefore, the resultant uncertainty estimates will be more conservative
than if a single median had been selected.

Figure 1. Illustration of 1-Hz data points as red dots aligned to the route of the car.

2.2 Data cleaning

We assess the single pass mean segment data for conditions that, due to their sampling
conditions or timing, are likely to result in biased estimates for typical ambient concentrations.

2.2.1 Assess for segments influenced by self-pollution
There may be times during routine driving when the car may sample its own tailpipe emissions,
which we refer to as “self-pollution.” Self-pollution will result in measured pollution
concentrations higher than the local atmospheric concentrations for most pollutants (ozone
would be biased lower) and is thus not representative of the “true” atmospheric conditions.
Inclusion of data a�ected by vehicle self-pollution in the single pass mean data will also bias
any analyses built on the segment data, including the calculation of atmospheric concentration
estimates. Note that we use hybrid cars in our fleets that typically shut o� their gasoline
engines when they stop and thus reduce possible instances of self-pollution.

We have identified two conditions where there is potential for self-pollution; (1) when a vehicle
is stationary for an extended period of time or (2) repeated drives in a short period of time of
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the same road segment where the vehicle may pass through its own plume, such as might
happen in a cul-de-sac or when making a u-turn. Whether measurable self-pollution does occur
as a result of these two conditions, we conservatively remove segments that meet either of
these two criteria from further analysis. We identify a vehicle as stationary when there are more
than 75 seconds of data in a single road segment. The intent is not to remove typical idling
situations found at stop lights/signs, but instead to remove a prolonged stay in a single location
that may be due to a driver stopping for one reason or another. (The results of our first year of
mapping in the San Francisco Bay Area showed that just over 99% of all passes take less than
75 seconds.) In the second case, Aclima removes sequential passes of a segment within 30
seconds of the prior pass. Drivers have been trained to reduce the likelihood of self-pollution in
these and other situations.

Table 1: Example of a set of single pass means sampled on the same segment over
several days. Data from passes 6 and 13, denoted in bold text and which fall within a
three-hour window of an earlier pass, are excluded from subsequent analysis.

Pass # Date, Time PM2.5 (µg/m3)

1 9/17/20 19:51 8.84

2 9/19/20 11:16 11.62

3 9/19/20 21:14 3.08

4 9/20/20 9:20 2.04

5 9/22/20 1:25 2.16

6 9/22/20 2:04 1.96

7 9/24/20 8:06 36.03

8 9/25/20 8:07 40.83

9 9/25/20 11:47 79.95

10 9/26/20 11:02 5.14

11 9/27/20 11:24 3.85

12 9/28/20 11:32 18.18

13 9/28/20 12:47 11.92

2.2.2 Over-representation of single pass means in a single day
Given the way communities are designed, drivers often need to drive the same road to traverse
a neighborhood or an entire city. Occasionally, this results in driving along the same road
segment over time periods from minutes to hours. These repeat visits over a relatively short
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time frame result in greater statistical weight to the data collected during these times. Aclima’s
current solution is to exclude all but the first pass that happens within a rolling three hour
window. These passes are also not included in Aclima’s assessment of our progress towards an
average of ~20 passes per contract region to make sure that our unique passes are temporally
balanced over the contract sampling time. We recognize that the current approach may be
overly restrictive, resulting in the potential removal of valid data.

An example of a set of single pass mean values sampled for one segment over several days is
shown in Table 1. There are two pairs of passes, 5 & 6 and 12 & 13, where the second is within a
three hour window of the first. In this example, passes 6 and 13, denoted in bold in the table,
would be excluded from subsequent analysis. In contrast, while passes 8 and 9 are close in time,
pass 9 is more than 3 hours after pass 8 so both would be included.

3.0 Ambient concentration estimates

Air pollution has significant variability over time and space, which means that the creation of
geospatial, time-integrated maps from spatially-resolved measurements is complex. Both must
be considered when designing analysis and data-driven modeling methods to produce ambient
concentration estimates.

Pollution concentrations can vary over time scales that range from less than a minute to
months. Short time scale variability, on the order of seconds to minutes, are most often
observed near sources (e.g. the plume from a combustion source) but may also reflect spatial
variability between neighborhoods or regions within a city. Within-day, day-to-day, and yearly
variations in pollution concentrations can result from phenomenon including changes in the
temporal patterns of when emissions occur, atmospheric dynamics, seasonal changes in the
weather, and changes in regional concentrations caused by synoptic-scale meteorology.

Spatial variability in air pollution over the scale of a city block, between neighborhoods, or
between cities mainly arises from the location of and distance from sources, e�ects of urban
design such as street canyons, and di�erences in microscale weather, like variations in
temperature and wind speed and direction that arise from local and regional topology.

High spatial resolution annual average estimates are derived from batch processing the
segment pass measurements across the full geographic area interest and time window over
which mapping occurred. The key challenge in the calculation of these high spatial resolution
estimates is to separate the part of the time-resolved signal in a measurement area that comes
from true spatial variability from that due to temporal changes that may be spatially
homogeneous, but sampled at di�erent times in di�erent locations — sifting signals at multiple
temporal and spatial scales in order to separate region-wide changes from hyperlocal signals of

© Aclima 2023 Patented & Patents Pending | Trade Secret & Proprietary Business Information 7



HYPERLOCAL AMBIENT CONCENTRATION ESTIMATE VALIDATION AND QA SYSTEM, V 1.2

interest. The signal processing algorithms must also handle measurement correlations that are
inherent in any set of observations.

We have designed an estimation framework to address separation of signals of interest as well
as empirical spatial and temporal correlation in the road segment pollutant concentrations,
tailoring algorithms to derive the best estimate of the annual average of each individual
pollutant at high spatial resolution.

3.1 Modeling strategies

Aclima’s overall modeling approach for generating annual average estimates consists of the
decomposition of the input observations into broad regional spatial trends, region-wide
temporal trends and the hyperlocal signal. These components are then recombined into annual
average estimates at hyperlocal spatial resolution.

Figure 2 - Visual illustration of how ambient concentration estimates for each segment are produced by
combining the central tendency of the large-scale spatial and temporal trends with the hyperlocal signal.

We tailor the constituent modules of this framework to each pollutant to ensure the best
estimate of annual average for individual pollutant concentrations. The noise and structure of
the input measurements dictate applicability of di�erent estimation processes for
decomposition and reconstruction. The data-driven models are introduced in the following
sections, and are applicable for version 2.0.1 of the modeling code.
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3.1.1 Background normalized median method

Signal decomposition and reconstruction
For version 2.0.1 of the background normalized median model, we bypass the large spatial
trend decomposition and directly separate out the temporal trends across the region from the
hyperlocal signal. A background model is formed from temporal trends either from nearby
regulatory stations or by pooling information from across our sensor networks.

For each single pass of a segment, the di�erence between the single pass mean concentration
for that segment and the hourly background measurement is calculated to form the hyperlocal
signal. This di�erence reflects an enhancement or decrement relative to the regulatory station
during that hour. The observed positive or negative di�erence is added to the median pollutant
level of the background model over the full baseline, which can then be reconstructed with the
median of the background signal, reconstructing the observations into a normalized signal with
local di�erentials. The median in time across this reconstructed data for each segment yields
the yearly average estimate.

Figure 3: Visual illustration of the background normalized median process.

Background model
The methods Aclima uses to generate background models include identifying relevant
regulatory monitoring stationary sites and deriving a background model directly from
aggregated sensor measurements. Regulatory stationary site inclusion requires manual review
of readings for appropriateness.

Sensor-based background signals are determined by pooling sensor measurements across time
and extracting a percentile matched to pollutant behavior. Percentiles are chosen based on
parameter tuning through comparison to regulatory sites, noise of the sensors, and
expectations of pollutant behavior. For example, when modeling pollutants in a small dense
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urban area, a high percentile for ozone concentrations represents background, as local
emissions on top of the background result in dips in the ozone concentration.

Credible interval methodology
Estimating uncertainty for segment-level statistics for pollutant concentrations, specifically the
Background Normalized Median, does not lend itself well to the most common statistical
procedures for computing confidence intervals. Low pass counts, non-gaussian concentration
distributions, and measurement noise makes those methods inappropriate and di�cult to
interpret. Aclima uses the Bayesian Bootstrap approach to estimate the uncertainty associated
with each road segment over the monitoring period. This method randomly resamples the
initial dataset, resulting in a probability distribution over plausible values of the median given
the observed data. This probability distribution is termed the posterior distribution in Bayesian
statistics and allows us to directly estimate uncertainty intervals for estimates of typical
pollutant levels during the monitoring period. This estimate of uncertainty or credible interval
is the Bayesian statistics cousin to the confidence interval.

The Bayesian Bootstrap procedure is performed to generate posterior distributions for the
segment aggregate BN Median, from which uncertainty estimates can be calculated. The
process utilizes a uniform Dirichlet distribution, which models the randomness of the
probability of outcomes parameterized by a vector of positive valued numbers based on the
underlying single pass data for an individual segment and a number of passes. A single
Bayesian Bootstrap replicate uses the Dirichlet distribution to sample the probability weights
(alpha) for the pass data for that segment. To compute posterior distributions for the
BNMedian, we use the weighted median from a number of draws. Once posterior distributions
for the BNMedian (weighted median) are obtained, 95 percent credible intervals are calculated
and reported as uncertainty estimates.

It is important to note that the confidence intervals are designed to capture the precision of the
estimate but are not appropriate tools for quantifying systematic bias that could influence the
accuracy of the pollution estimates. Examples of systematic bias include device-level bias for
individual sensors and potential inaccuracies in the sensor models. At the device level,
systematic bias is better captured by pre- and post-deployment calibrations and the associated
acceptance criteria.

3.1.2 Statistical measurement reconstruction method

Signal decomposition and reconstruction
A statistical method is used to produce ambient concentration estimates based on correlations
in the spatial and temporal measurements obtained during mapping. The method enables the
estimate of likely pollution levels for each road segment that was not sampled on a given day to
generate reliable estimates of baseline concentrations. The method imputes pollution
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concentration data for all road segments for all days, which are averaged over the
measurement period to obtain a single estimate of the baseline concentration for each road
segment. A general additive model is used to produce spatial and large-scale temporal trends
which are used in combination with the results of the statistical measurement reconstruction
method to estimate the value of the pollutant concentration.

The statistical imputation process used includes few assumptions, has low complexity, and few
tunable parameters. Importantly, this technique only requires data collected by mobile
monitoring. Therefore, it can be applied in regions without representative stationary site
measurements for comparison and adjustment to background variations. In some cases, for
instance extreme, highly localized air pollution events (i.e. wildfires) may not be captured well
by this procedure.

Credible interval calculation
The result of the combined methods is a distribution of estimates for each segment and each
day. The baseline estimate and distribution around the estimate is produced from multiple trials
from the set of daily data. The credible interval is calculated from the distribution.

3.1.3 Pollutant Method Mapping

The chart below lists the methods employed for each pollutant. Multiple methods for a single
pollutant indicates an annual average product has been produced using each of these methods
since 2019. The bold text indicates the model that has been previously used to deliver publicly
available maps. Aclima determines the best-suited model for producing the ambient
concentration estimate depending on the pollutant and availability of relevant data.
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Pollutant Background
Normalized Median

Statistical
Measurement
Reconstruction

Median

CO X X

CO2 X X

PM2.5 X

O3 X X

NO2 X X

Black Carbon X X

NO X

Methane X

4.0 Metrics for collection adequacy

The degree to which our ambient concentration estimates are representative of typical
concentrations observed over the sampling period depends on (1) having su�cient
observations (i.e.,repeat visits to the road segment) over the contract time period and (2) that
those observations are balanced across the measurement period to account for the intrinsic
variation of pollutant levels.

Aclima targets a minimum of 20 passes over each segment during a baseline period, which is
the top of the range identified in Apte et. al. (2017) as necessary to achieve stable segment
aggregates. Drive passes identified for exclusion from analysis as part of the data cleaning
process, either identified as influenced by self-pollution (Section 2.2.1) or as repeated passes
within a rolling 3-hour window (Section 2.2.2), are not included as part of the pass count.

Aclima calculates a temporal balance metric to assess how well road segments are sampled
evenly across morning and evening, and between weekdays and weekends, and over seasons of
the year. Meaningful segment estimates require su�cient sampling to rule out the possibility
that anomalous signals a�ect the concentration estimate resulting in either a false positive
(anomalous high concentration) or false negative (anomalous low concentration). Segments
with a metric that indicates insu�cient temporal balance may be filtered and excluded from
visualization if desired.
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5.0 Validation of segment aggregate concentration estimates

The unique value of hyperlocal maps resulting from mobile mapping also makes validation
di�cult as independent data at this spatial resolution are not available for comparison. To
address this, we have developed a variety of approaches to validate performance of our
ambient concentration estimates.

5.1 Validation by comparison with regulatory measurements

Quantifying uncertainty at the device level is a key piece in understanding data quality of the
hyperlocal maps, but the uncertainties do not necessarily propagate in a straightforward way to
the final data products. For this reason, Aclima’s approach is to compare our mobile
measurements to stationary measurements (e.g., regulatory reference) where those data are
available in order to directly quantify uncertainty against the traditional, established methods
for measuring ambient concentrations of pollutants over time. In regions where a suitable
number of reference sites are available, the mobile-to-stationary comparisons can provide
basic statistics to describe uncertainty broadly across the mapping region, extrapolating to
locations where reference sites do not exist.

We have taken two approaches to map evaluation based on regulatory sites. These include, (1) a
time-resolved approach where individual segment pass means are compared with the
appropriate hourly averaged data (Section 5.1.1) and, (2) a time-integrated approach where
ambient concentration estimates are compared with the median value reported by the station
over the same time period (Section 5.1.2). The first approach is an extension of the device-level
data quality evaluation, but allows for an aggregation of bias across all devices contributing to
the hyperlocal map. Additionally, it allows for a determination of inter-network di�erences that
could result from, for example, systematic di�erences in the calibration sources used or
di�erences between di�erent measurement techniques (i.e. optical particle detection vs
gravimetric detection of PM2.5). The second approach provides a quantification of overall
uncertainty of the final data product, including device-level uncertainty, sampling uncertainty,
and uncertainty resulting from the modeling approach used to produce the ambient
concentration estimates. The results reported here are based on mobile mapping conducted
across California since the start of 2019 and use the regulatory data reported to California Air
Quality Management District’s Air Quality Monitoring Information System (CARB AQMIS) over
the same time period. As Aclima continues to map in more regions, we expect to refine these
uncertainty estimates and determine how relevant these results are for other locations,
including areas with a limited existing air quality measurement network.

Regulatory site measurements can be spatially representative over scales of several meters to
several kilometers, depending on the site type as defined by USEPA (page 5). However, direct
comparisons between mobile measurements and regulatory site measurements can be
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complicated due to the fact that mobile measurements represent on-road conditions, having
high variability across di�erent road types. As a result, it is important to consider the spatial
and temporal aggregation scales as well as the maximum allowable distance between
stationary and mobile concentrations, which we will refer to as the distance bu�er in the
following discussion.

Previous in-depth analysis (Whitehill et al., in prep, LaFranchi et al., 2022, Solomon et al., 2020)
has shown that the key to making a meaningful comparison between mobile and stationary
measurements is to reduce random noise in the comparison due to atmospheric variability by
maximizing the number of collocation samples while minimizing the distance bu�er and
filtering out high variability road types (e.g. highways). Given su�cient collocation samples
within a small radius, it is possible to accurately characterize bias between on-road
measurements (both time-resolved and time-integrated) and a stationary reference network.
While we have found that there can be high degrees of correlation between mobile and
stationary measurements even at distance bu�ers of 3-5 km, we choose to use a radius of
250m for this evaluation to reduce the likelihood of spatial variability influencing the results.

5.1.1 Time resolved comparison of mobile sensor measurements to regulatory measurements

To evaluate the quality of AMN measurements on a day to day basis, Aclima compared single
pass mean segment data for PM2.5, NO2, O3, and CO collected within a 250 m radius around a
regulatory site to the data reported by that site. The single pass mean concentrations
measured within this radius for each pollutant were averaged to 24 hours across all devices and
sites and compared to the daily mean of the measurements from the regulatory site for the
hours when the car was within the distance bu�er. For instance, if the car was near the site in
the 10 AM, 2 PM, and 11 PM hours, only the corresponding data from the same hours was used
from the regulatory site. Note that more than one vehicle/device may be part of the comparison
for any given day, and the overall temporal comparison will certainly be made up of data from
multiple cars. This comparison provides an indication of the general quality of the AMN device
data in situ and across many devices, as well as insight about the value of data aggregated over
di�erent spatial and temporal scales.

For this evaluation, we focus on data collected in the Bay Area Air Quality Management District
(BAAQMD) region. The data from all cars and relevant sites in the region (i.e. the sites reported
measurements for the pollutant and had roads within 250 m of the site) were averaged
together for a network-wide assessment. The number of regulatory sites used in the
comparison ranged from 14 to 17 depending on the pollutant. Figure 5 presents time series and
regression analysis for PM2.5, NO2, O3, and CO for the daily average values. Excellent daily
average temporal agreement (R2 > 0.9) with little bias (<8%) is observed for PM2.5 and O3.
Agreement for NO2 and CO is slightly reduced (R2 >0.65) with a bias of less than 20% for both.
These results are comparable to other more direct estimates of device-level data quality from
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our pre- and post-deployment calibration audits as well as from an independent side-by-side
collocation study at the Laney College monitoring site in Oakland, CA.
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Figure 5. Comparison of daily mean mobile sensor (M) measurements within a 250 m radius circle
centered at a stationary regulatory site to daily mean hourly data at that regulatory site (S). Data for all
mobile platform measurements within 250 m of a regulatory site are compared to that regulatory site
within the baseline period. Daily time series (left column) and recession analysis with regression statistics
(right column) are presented for A) PM2.5 [µg/m3]; B NO2 [ppb]; C) O3 [ppb]; and D) CO [ppm]. A Type II -
Major Axis regression was used with no weighting.
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These results, in relation to FRM and FEM measurements of precisely known uncertainty at
stationary regulatory sites, confirms that Aclima’s mobile platforms achieve high quality data at
hyperlocal, block-by-block and community wide spatial scales with acceptable bias and very
good temporal agreement. For example, based on an extensive literature search and
international sensor workshops, the USEPA has developed a draft set of target values for air
pollution sensors that measure PM2.5 and O3 (Williams et al., 2019; Duvall et al., 2020).
Performance metrics reported (Duvall et al., 2021) included precision, bias and intercept,
coe�cient of determination (R2), and error (RMSE) for PM2.5 and O3. Aclima’s mobile sensor
data quality objectives meet or exceed EPA’s performance guidance for PM2.5 and O3. USEPA
has evaluated sensor performance for NO2, CO (Duvall et al. 2021) but has not formally
summarized findings as done with PM2.5 and O3.

5.1.2 Time integrated comparison of ambient concentration estimates to regulatory
measurements

To evaluate the overall performance of the Ambient Concentration Data Product, the ambient
concentration estimates (ACE) at 100 m road segment aggregations within a 250 m radius of a
regulatory site were compared to the annual median concentration from that regulatory site for
each pollutant over the same time period. (Note: BC is not included as there are not yet
su�cient mobile BC measurements within 250 m of a regulatory station that also report BC.)
Here we present an example of this evaluation using data collected throughout California,
including the BAAQMD region as well as neighborhoods in San Diego, Sacramento, Los Angeles,
and San Bernardino. We perform this same analysis whenever we complete mapping for
seasonal or annual data products.

Table 2 presents several evaluation metrics for the combination of all regulatory sites and all of
the Bay Area annual baselines based on the observed di�erences (Dj,s) between each segment

(s) and stationary site (j). This collection of Dj,s values are aggregated to calculate a mean ( )𝐷
𝑗

and a standard deviation ( ) for each site. The evaluation metrics based on are thenσ
𝐷,𝑗

𝐷
𝑗

defined as follows:

● Mean Bias Error (MBE), which provides an estimate of systematic bias between our ACE
and regulatory measurements

𝑀𝐵𝐸 = 𝑗=1

𝑁

∑ (𝐷
𝑗
)

𝑁

● Mean Absolute Error (MAE), which provides an estimate of absolute bias between our
ACE and regulatory measurements across all sites
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𝑀𝐴𝐸 = 𝑗=1

𝑁

∑ ( 𝐷
𝑗

|||
|||)
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● Centered Root Mean Square Error (CRMSE), which is a bias-adjusted version of Root
Mean Square Error, and provides an estimate of precision of the ACE values compared to
regulatory measurements, where outlier di�erences are weighted more heavily.
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● Correlation Coe�cient (R2), determined from a linear regression (OLS) between the
mean ACE concentration around each site ( ) and the stationary median values for𝐴𝐶𝐸

𝑗

each site, j, which provides a measure of the ability of the ACE map to reproduce the
variance observed across the stationary network.

● Standard Deviation ( ), which describes the variability at the segment level aroundσ
𝐷

each site, reflecting true local variability due to di�erent road types and local sources as
well as random precision uncertainty for ACE values at segment aggregations
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Table 2: Performance metrics for comparison of map segment aggregates within 250 m of a
regulatory site to that site for all regulatory site locations and baselines periods.

MBE MAE CRMSE R2 σD

PM2.5 +0.5 μg/m3
(11%)

1.7 μg/m3
(23%)

2.2 μg/m3
(30%)

0.40 0.8 μg/m3

NO2 -0.2 ppb
(-5%)

1.7 ppb
(30%/22%*)

2.2 ppb
(44%/28%*)

0.77 2.0 ppb

O3 +0.4 ppb
(+2%)

1.2 ppb
(5%)

1.4 ppb
(6%)

0.82 0.8 ppb

CO +0.04 ppm
(+15%)

0.06 ppm
(21%)

0.07 ppm
(25%)

0.11 0.04 ppm

* NO2 %MAE and % CRMSE values are heavily influenced by several sites where NO2 concentrations are relatively low. When
excluding sites with annual median concentration less than twice the CRMSE value, the % MAE and % CRMSE reduce to 22% and
28%, respectively.
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The results in Table 2 can be interpreted as overall uncertainty for the ACE data product
combining uncertainties across the entire platform, including device level, sampling, and
modeling uncertainties. In order to help put these results in perspective, these metrics are also
calculated as a percentage using relative di�erences for each site and compared to the
uncertainty thresholds listed for di�erent use cases according to the EPA Air Sensor Guidebook
(Williams et al, 2014), as shown in Table 3. Bias (as MAE) ranges from 5% (O3) to 30% (NO2).
Systematic bias (as MBE) is relatively low, ranging from -5% (NO2) to +15% (CO), indicating that
most sources of uncertainty in the ACE data product are random.

Precision (as CRMSE) ranges from 6% (O3) to 44% (NO2). As a percent, NO2 bias and precision
are somewhat high (~30-45%), however, this is driven by high relative uncertainties at several
sites where annual median concentrations are less than 5 ppb. Excluding these low NO2 sites,
the % precision and bias are both <30%. The Hotspot Identification (Tier II) use case for all 4
criteria pollutants is achievable. For O3, the % bias and % precision are low enough to be used
for the Supplemental Monitoring use case (<20%).

Table 3: Adapted from the EPA Air Sensor Guidebook (Williams et al., 2014), showing the
di�erent tiered use cases for sensors according to precision and bias uncertainty alongside the
ACE Data Product modalities suitable for each tier. Tiers where the ACE data products do not
support the use case are listed as not applicable (NA).

Tier Use Case Precision and Bias
Uncertainty

ACE Data Product Modalities

I Education and Information <50% NO2, O3, PM2.5, CO

II Hotspot Identification and
Characterization

<30% NO2*, O3, PM2.5, CO

III Supplemental Monitoring <20% O3

IV Personal Exposure <30% NA

V Regulatory O3 (<7%)
PM2.5 (<10%)
NO2 (<15%)
CO (<10%)

NA

* In locations where NO2 ACEs are higher than ~5 ppb.

In order to further illustrate the comparisons between ACE concentrations and the stationary
site concentrations, Figure 6 shows the scatter plot between ACE and stationary sites, with
error bars in the figure representing for the collection of segments around each value.σ
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The best fit lines shown are ordinary least squares fit to the data. as a function of the median
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regulatory site concentration. The correlations from these plots between the data are shown in
Table 5 as R2calculated using ordinary least squares. In addition, the standard deviation for the
set of segments around each location are also displayed around each segment mean value as a
measure of segment to segment variability around each site.

Figure 6. Comparison of the baseline annual mean segment concentration within 250 m from the
regulatory site annual median for each site for which a comparison was possible for (A) PM2.5 (µg/m3), (B)
NO2 (ppb), (C) O3 (ppb), and (D) CO (ppm). The standard deviation of the set of segments within the 250
m radius that comprise the mean are shown as error bars around the mean value. The trend line is the
result from an OLS linear fit to the data.

The figures show general agreement with the trend line, with O3 and NO2 showing strong
correlations, with R2 of approximately 0.8 for both, while CO has poor correlation (R2 = 0.1) and
PM2.5 has moderate correlation (R2 = 0.4). The precision uncertainty (as CRMSE) for CO is
approximately the same order of magnitude (0.07 ppm) as the standard deviation of CO
concentrations observed across all of the regulatory sites used in this analysis. Similarly, PM2.5

variability across the sites used in the analysis is relatively small (2.6 ug/m3) compared to the
CRMSE of 2.2 ug/m3. As a result, the R2 values for both CO and PM2.5 likely do not reflect the
true performance that would be found in comparison with stationary networks capturing a
wider range of concentrations. As Aclima continues to collect data in more diverse locations, we
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will continue to refine these uncertainty estimates and improve confidence that they are
generalizable to more locations.

This analysis is not currently possible for CH4, CO2, C2H6, and BC because of data availability for
these pollutants at suitable stationary sites in locations that Aclima has mapped to date.

5.2 Accounting for Systematic Measurement Bias

In the examples provided in Section 5.1, the bias between the Ambient Concentration Estimates
and existing regulatory measurements was relatively low for all pollutants evaluated. While a
robust and well-executed measurement quality assurance system is key to minimizing this
systematic bias, the possibility for significant bias is always a possibility when comparing two
di�erent measurement networks operated by di�erent organizations using di�erent primary
standards, detection methods, and levels of data quality. We continue to assess Aclima sensor
performance compared to di�erent reference equipment, with an ongoing program of research
and development to understand how accuracy varies in di�erent locations with varying
pollution sources and concentrations, meteorology, and other factors. Sensors in the platform
not routinely compared directly to a reference method (CO, PM2.5, and Black Carbon) as part
of its standard calibration procedure may be particularly prone to systematic bias.

In addition to the approach described in Section 5.1.1 of using time-resolved comparisons
between mobile and regulatory measurements to evaluate the quality of AMN measurements,
direct collocations of Aclima’s AMN and associated sensors at existing monitoring sites is an
additional approach that can be used to increase confidence in the characterization of sensor
bias. In addition, this approach can help identify any time-dependent correlations with the
degree of bias that might be missed from the mobile vs stationary comparisons (i.e. seasonal,
time of day, with varying meteorological conditions etc.) as well as provide valuable context for
interpreting bias resulting from the fleet-wide comparisons of mobile measurements to
stationary measurements.

At the end of a measurement period for the ambient concentration estimates, Aclima has the
option to use these in situ comparisons to adjust for systematic bias in certain cases. This
process helps to better harmonize Aclima’s measurements with existing measurement
networks, which are usually the best source of truth for a given pollutant. While this approach
may be applied to any pollutant, a typical scenario where this is expected to be necessary is for
PM2.5. The parameters used in the sensor model that converts Aclima’s particle count
measurements to PM2.5 have been found to vary across di�erent geographies, attributed to
di�erences in size distribution and chemical composition of the ambient aerosol in these
locations. Additionally, there are known sources of bias even between di�erent approved
(Federal Equivalent Methods or FEM) regulatory methods for measuring PM2.5, and Aclima’s
PM2.5 sensor has been found to have di�erent degrees of systematic bias when compared to
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di�erent FEM methods of measuring PM2.5. In cases where these sources of systematic bias
are deemed to be significant, the in situ comparisons are used to derive the optimal set of
parameters to apply for a particular geographic location prior to generating the final ambient
concentration estimates.

5.3 Validation of model-generated ambient concentration estimates

Aclima’s modeling strategies are validated through a number of approaches. We employ a
series of test scenes to assess the ability of a model to capture specific types of intrinsic spatial
and temporal features in air pollution concentrations, such as sharp spatial gradients in
concentrations. We additionally use self-contained validation strategies for calculating errors
with subsets of the measurements against model predictions, as well as for assessing model
stability.

5.3.1 Evaluation using test scenes

We test our models against a series of test scenes, much like vicarious calibration of remote
sensing systems against targets with known, constant surface reflectance. We consider the
model as encompassing both the sampling strategy (the true trajectories and measurement
times from our fleet in the region) as well as the algorithms for estimating annual
concentrations since these are naturally coupled. These test scenes are not meant to capture
the full complexity of the atmosphere and resulting patterns in pollutant concentrations.
Instead, they are intentionally selected to stress test a model against specific observable
features in a repeatable manner. These test scenes enable calculation of the e�ective
resolution of the model against a broad set of signals.

5.3.2 Self-contained validation strategies

Self-contained validation strategies use subsets of the measurement against model prediction
to calculate errors, and can also be used for assessing model stability. Our self-contained
validation strategies include internal goodness of fit, parameter sensitivity training, out of
sample validation, and validation against third party data.
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