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The Statewide Mobile Monitoring Initiative is part of 
California Climate Investments, a statewide initiative that 
puts billions of Cap-and-Trade dollars to work reducing 
greenhouse gas emissions, strengthening the economy, and 
improving public health and the environment — particularly 
in disadvantaged communities. 
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1.0 Introduction 

Among the useful data outputs that mobile mapping generates are analyses that support 
visualization of  typical pollution concentrations with high spatial resolution (“ Hyperlocal 
Maps”) across a specific region, city, or community. These maps highlight typical concentrations 
over a defined measurement period illustrating high and low pollution concentrations at the 
street level. The maps are only one of many data products that can be generated from mobile 
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mapping, but represent a foundational data product that fills a critical gap in understanding the 
spatial distribution of pollution. Aclima uses verified 1-Hz data to produce concentration 
estimates at desired and practical aggregation length scales (e.g. hexbins or road segments) 
showing areas of persistently high or low levels of individual pollutants, supporting the 
identification of areas of disproportionate impact..  
 
Aclima’s Data Quality Objectives for the creation of maps of ambient concentration estimates 
are as follows: 

●​ Produce ambient pollution concentrations estimates for the monitoring time period and 
monitoring area from measurements collected at different times of day and throughout 
the week and across seasons to adequately address seasonal and diurnal variations in 
the data.  

●​ Spatial distribution of data throughout the entire user-defined geographic area. 
●​ Produce concentration estimates at desired and practical spatial aggregation scales (e.g. 

hexbins, road segments). 
●​ Include a measure of confidence (i.e. confidence interval) with each ambient pollution 

concentration estimate in order that users can understand the reliability of the 
estimates and assess the true difference in concentrations between locations.  

●​ Monitor and track the performance of each pollution measurement using key data 
quality indicators of bias, precision, and drift. 

We support the creation of ambient concentration estimates for the following pollutants1: 
●​ O3, NO2, CO, CO2, PM2.5, and BC 

 
Ambient pollution concentration estimates are not produced until data collection is complete 
and the data are verified. These concentration estimates are calculated using a data-driven 
modeling framework that uses all the verified data on that road or in that area and incorporates 
additional sources of data that provide information on broad regional spatial trends and 
region-wide temporal trends, including, in some cases, regulatory measurements from 
stationary monitoring sites.  The results provide the best estimate of the average concentration 
for each pollutant that retains true spatial variability at the hyperlocal scale while accounting 
for biases that may result from the mobile method sampling at different times in different 
locations. This high spatial resolution of Aclima’s resulting data products supports identification 
of emissions sources as well as information on neighborhood-level variability in air pollution 
concentrations to support disparity analysis.  The mobile mapping method is not a reference 
method designed to support the National Ambient Air Quality Standards (NAAQS), which are 

1  The TVOC sensor has two characteristics that make data from the sensor unsuitable to support ambient concentration 
estimates; (1) the sensor is sensitive to a wide range of VOCs with the sensitivity to different classes of VOCs varying by 
multiple orders of magnitude, (2) the sensor is prone to baseline drift.  For more information, see Appendix C,  Section 5.6.5. 
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supported by a network of stationary reference monitors. Thus, data products from the mobile 
method do not support assessment of compliance with NAAQS. 

The Data Quality Objectives are used to define the sampling, measurement, data processing, 
and analysis methodologies. This document describes the process Aclima follows moving from 
the verified 1-Hz data to high-resolution spatial estimates of ambient concentration, including 
how we test for data that might not be valid for inclusion in calculations or visualizations as well 
as our validation and verification processes. 

2.0 Data preparation  

2.1 Data geolocation and aggregation   

As Aclima’s cars drive along publicly accessible roads, sensors within the Aclima Mobile Note 
(“AMN”) sample at a 1-second frequency. These measurements are associated in the Aclima 
database with a specific 1-s Global Positioning System (GPS) time and location. The raw GPS 
position information can at times be some meters from the road the car was driving due to the 
fundamental uncertainty in the GPS measurement as well as external factors, such as tall 
buildings, interfering with the ability of the GPS system to achieve a solid location fix. The 
position of the raw GPS data is corrected to align with the route driven by the car, often termed 
“snapping to the road”, reducing location uncertainty (Figure 1). 
 
The 1-second measurements are assigned to a unique spatial unit (i.e. road segment, hexbin, 
etc.) that supports a specific monitoring objective based on the corrected location (latitude and 
longitude) of the data point. Each individual drive in that spatial unit is defined as a pass or visit. 
First the 1-second data is aggregated in space to calculate the mean over the desired spatial 
unit for each pass through that spatial unit, typically referred to as a “single pass mean”.  The 
number of 1-s measurements for each spatial unit varies based on size (length or area), the 
speed limit of the street, and traffic conditions during the drive pass. This spatial aggregation 
allows multiple data points to be included in the calculation of the single pass mean, improving 
the estimate of the mean pollution level at that location. The use of the single pass mean for 
any particular spatial unit serves to give equal weight to each geographic portion of the drive 
regardless of how many 1-second data points were collected over that spatial unit. The result is 
time-resolved data at the geographic spatial unit level rather than 1-second. 
 
The mean of the 1-second data points will be influenced by outliers, resulting in a collection of 
single-pass means that accommodate a greater degree of variability due to sampling than a 
collection of medians. Therefore, the resultant uncertainty estimates will be more conservative 
than if a single median had been selected. 
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Figure 1. Illustration of 1-Hz data points as red dots aligned to the route of the car.  
 

2.2 Data cleaning  

Prior to using the 1-second data to produce ambient concentration estimates, data is flagged 
using specifically defined qualifier codes for conditions that, due to their sampling conditions or 
timing, are likely to result in biased estimates for typical ambient concentrations.  
 
There may be times during routine driving when the car may sample its own tailpipe emissions, 
which we refer to as “self-pollution.” Self-pollution will result in measured pollution 
concentrations higher than the local atmospheric concentrations for most pollutants (ozone 
would be biased lower) and is thus not representative of the “true” atmospheric conditions. 
Inclusion of data affected by vehicle self-pollution will bias the calculation of atmospheric 
concentration estimates. Note that we use hybrid cars in our fleets that typically shut off their 
gasoline engines when they stop and thus reduce possible instances of self-pollution. While 
electric vehicles are also used in our fleet, which are not subject to the same types of self 
pollution concerns, we use the same approach across all data collected. 
 
We have identified two conditions where there is potential for self-pollution; (1) when a vehicle 
is stationary for an extended period of time or (2) repeated drives in a short period of time of 
the same section of road where the vehicle may pass through its own plume, such as might 
happen in a cul-de-sac or when making a u-turn. Whether measurable self-pollution does occur 
as a result of these two conditions, we conservatively remove segments that meet either of 
these two criteria from further analysis. We identify a vehicle as stationary when there are more 
than 75 seconds of data in a single road segment. The intent is not to remove typical idling 
situations found at stop lights/signs, but instead to remove a prolonged stay in a single location 
that may be due to a driver stopping for one reason or another. (typically we find that that just 
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over 99% of all passes take less than 75 seconds.) In the second case, Aclima removes 
sequential passes of a segment within 30 seconds of the prior pass. Drivers have been trained 
to reduce the likelihood of self-pollution in these and other situations. 
 

3.0 Ambient concentration estimates  

Air pollution has significant variability over time and space, which means that the creation of 
geospatial, time-integrated maps from spatially-resolved measurements is complex. Both must 
be considered when designing analysis and data-driven modeling methods to produce ambient 
concentration estimates.  
 
Pollution concentrations can vary over time scales that range from less than a minute to 
months. Short time scale variability, on the order of seconds to minutes, are most often 
observed near sources (e.g. the plume from a combustion source) but may also reflect spatial 
variability between neighborhoods or regions within a city. Within-day, day-to-day, and yearly 
variations in pollution concentrations can result from phenomena including changes in the 
temporal patterns of when emissions occur, atmospheric dynamics, seasonal changes in the 
weather, and changes in regional concentrations caused by synoptic-scale meteorology. 
 
Spatial variability in air pollution over the scale of a city block, between neighborhoods, or 
between cities mainly arises from the location of and distance from sources, effects of urban 
design such as street canyons, and differences in microscale weather, like variations in 
temperature and wind speed and direction that arise from local and regional topology. 
 
High spatial resolution average concentration estimates are derived from batch processing the 
individual measurements (either as 1 second measurements or single pass means) across the 
full geographic area interest and time window over which mapping occurred. The key challenge 
in the calculation of these high spatial resolution estimates is to separate the part of the 
time-resolved signal in a measurement area that comes from true spatial variability from that 
due to temporal changes that may be spatially homogeneous, but sampled at different times in 
different locations — sifting signals at multiple temporal and spatial scales in order to separate 
region-wide changes from hyperlocal signals of interest. The signal processing algorithms must 
also handle measurement correlations that are inherent in any set of observations.  
 
We have designed an estimation framework to address separation of signals of interest as well 
as empirical spatial and temporal correlation in the road segment pollutant concentrations, 
tailoring algorithms to derive the best estimate of the average of each individual pollutant at 
high spatial resolution over the monitoring time period. These modeling strategies require a 
number of assumptions which require validation, which is described in Section 5. 
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3.1 Modeling strategies 

Aclima’s overall modeling approach for generating long-term average pollution estimates over 
the monitoring time period consists of the decomposition of the input observations into broad 
regional spatial trends, region-wide temporal trends and the hyperlocal signal. These 
components are then recombined into average estimates at hyperlocal spatial resolution.  
 

 
Figure 2 - Visual illustration of how ambient concentration estimates for each segment are produced by 
combining the central tendency of the large-scale spatial and temporal trends with the hyperlocal signal. 
 
The constituent modules of this framework are tailored to each pollutant to ensure the best 
estimate of average for individual pollutant concentrations. The noise and structure of the input 
measurements dictate applicability of different estimation processes for decomposition and 
reconstruction. The data-driven models are introduced in the following sections.  

3.1.1 Background normalized median method  

Signal decomposition and reconstruction 
For the background normalized median model, we bypass the large spatial trend decomposition 
and directly separate out the temporal trends across the region from the hyperlocal signal. A 
background model is formed from temporal trends by pooling information from across our 
mobile platform network.  
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For each single pass of the relevant spatial unit, the difference between the single pass mean 
concentration for that spatial unit and the hourly background measurement is calculated to 
form the hyperlocal signal. This difference reflects an enhancement or decrement relative to 
the background model during that hour. The observed positive or negative difference is added 
to the median pollutant level of the background model over the full monitoring time period, 
which can then be reconstructed with the median of the background signal, reconstructing the 
observations into a normalized signal with local differentials. The median in time across this 
reconstructed data for each segment yields the average estimate over the monitoring time 
period.  
 

 
Figure 3: Visual illustration of the background normalized median process.  
 
 
Background model 
The methods used to generate background models may include identifying relevant regulatory 
monitoring stationary sites and deriving a background model directly from aggregated sensor 
measurements. For SMMI, because there is inconsistent availability of suitable regulatory 
monitors across all of the monitoring areas, sensor-based backgrounds will be used. 
 
Sensor-based background signals are determined by pooling sensor measurements across time 
and extracting a percentile matched to pollutant behavior. Percentiles are chosen based on 
parameter tuning through comparison to regulatory sites (if available), noise of the sensors, 
and expectations of pollutant behavior. For example, when modeling pollutants in a small dense 
urban area, a high percentile for ozone concentrations represents background, as local 
emissions on top of the background result in dips in the ozone concentration.  
 
Credible interval methodology 
Estimating uncertainty for segment-level statistics for pollutant concentrations, specifically the 
Background Normalized Median, does not lend itself well to the most common statistical 
procedures for computing confidence intervals. Low sample counts, non-gaussian 
concentration distributions, and measurement noise makes those methods inappropriate and 
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difficult to interpret. Aclima uses the Bayesian Bootstrap approach to estimate the uncertainty 
associated with each spatial unit over the monitoring period. This method randomly resamples 
the initial dataset, resulting in a probability distribution over plausible values of the median 
given the observed data. This probability distribution is termed the posterior distribution in 
Bayesian statistics and allows us to directly estimate uncertainty intervals for estimates of 
typical pollutant levels during the monitoring period. This estimate of uncertainty or credible 
interval is the Bayesian statistics cousin to the confidence interval. 
 
The Bayesian Bootstrap procedure is performed to generate posterior distributions for the 
spatial unit BN Median, from which uncertainty estimates can be calculated. The process 
utilizes a uniform Dirichlet distribution, which models the randomness of the probability of 
outcomes parameterized by a vector of positive valued numbers based on the underlying 
single pass data for an individual spatial unit and a number of passes. A single Bayesian 
Bootstrap replicate uses the Dirichlet distribution to sample the probability weights (alpha) for 
the pass data for that spatial unit.  To compute posterior distributions for the BNMedian, we use 
the weighted median from a number of draws. Once posterior distributions for the BNMedian 
(weighted median) are obtained, 95 percent credible intervals are calculated and reported as 
uncertainty estimates. 
 
It is important to note that the confidence intervals are designed to capture the precision of the 
estimate but are not appropriate tools for quantifying systematic bias that could influence the 
accuracy of the pollution estimates. Examples of systematic bias include device-level bias for 
individual sensors and potential inaccuracies in the sensor models. At the device level, 
systematic bias is better captured by pre- and post-deployment calibrations and the associated 
acceptance criteria. 

3.1.2 Statistical measurement reconstruction method 

Signal decomposition and reconstruction 
A statistical method is used to produce ambient concentration estimates based on correlations 
in the spatial and temporal measurements obtained during mapping. The method is designed 
to take a data set that is sparse in space and time and generate estimates of likely pollution 
levels in all locations and at all times, filling in the gaps. The method imputes pollution 
concentration data for all locations for all days, which are averaged over the measurement 
period to obtain a single estimate of the ambient  concentration for each location at the desired 
spatial unit.  
 
A general additive model is used to identify the large-scale spatial and temporal trends in the 
collected mobile monitoring data set. This general additive model relies on establishing 
correlations between the mobile monitoring pollutant data with external data sources, including 
information about road type, topographical data, time of day, time elapsed since the start of 
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monitoring, and gridded meteorological reconstruction data (NOAA’s High Resolution Rapid 
Refresh model). Once these correlations are established, they are used to interpolate the 
spatially and temporally sparse mobile monitoring data set across the entire space and time 
domain for the monitoring area and time period. This allows for a consistent representation of 
the large-scale atmospheric trends in space and time to be consistently applied across the 
monitoring domain in order to minimize sampling bias in the final ambient concentration 
estimates. Examples of these large scale features include, for example, seasonal or diurnal 
trends in air pollutants, large scale pollution events, such as long range transport of wildfire 
smoke, differences in pollutant concentrations with elevation, and differences in concentrations 
with road types (highways vs residential roads, for example) 
 
The data residuals remaining after decomposing the collected data into these correlated trends 
is considered the “hyperlocal” signal, which is still temporally and spatially sparse. This residual 
signal is influenced by local scale air pollutant variability, for example plumes of pollution from 
individual sources that are only detected in very localized areas, such as individual city blocks. 
This data is spatially and temporally interpolated using two commonly used geospatial analysis 
methods: DINEOF (Data INterpolation with Empirical Orthogonal Functions; Alvera-Azcárate et 
al. 2011) in combination with a Kalman Filter (Akatsuka, 2023). A limitation of this method is 
that highly localized discrete air pollution events (i.e. facility breakdowns, local fires, etc.) may 
not be captured well by this procedure. The advantage, however, is that the spatial distribution 
of higher and lower concentrations shown in the resulting map of ambient concentrations are 
less likely to be influenced by bias due to temporal sampling bias.  
 
Credible interval calculation 
The result of the combined methods is a distribution of estimates for each segment and each 
day. The ambient concentration estimate reported is taken as the central tendency (mean or 
median) from a distribution of values generated through multiple trials from the set of daily 
data. The credible interval is calculated from the spread of this distribution.  

3.1.3 Pollutant Method Mapping 

The chart below lists the methods employed for each pollutant from the Aclima Mobile 
Platform. Multiple methods for a single pollutant indicates an average concentration estimate 
product has been produced using each of these methods since 2019. Aclima determines the 
best-suited model for producing the ambient concentration estimate depending on the 
pollutant and availability of relevant data. The method for validation of these approaches is 
discussed in Section 5. 
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Pollutant Background 
Normalized Median 

Statistical 
Measurement 

Reconstruction 

Median 

CO X X  

CO2 X X  

PM2.5  X  

O3 X X  

NO2 X X  

Black Carbon X  X 

Various Air Toxics2 X  X 

 

4.0 Metrics for collection adequacy 

The degree to which our ambient concentration estimates are representative of typical 
concentrations observed over the sampling period depends on (1) having sufficient 
observations (i.e., average repeat visits to roads in the mapping area ) over the contract time 
period and (2) that those observations are sufficiently distributed across the measurement 
period to account for the intrinsic variation of pollutant levels.  
 
Alicma uses a dynamic sampling algorithm that is updated daily with the goal of collecting data 
that maximizes improvement in the characterization of air quality rather than specify a number 
of samples on any individual length of road.  The system ensures sufficient data collection to 
support spatially resolved ambient concentration estimates, with sampling deliberately 
distributed to provide higher rates of repeat measurements in locations with higher observed 
variability.  The driving algorithm is designed to complete an average of 20 repeat 
measurements distributed across all residential and major roads in all census block groups. 
Twenty repeat measurements  is generally found to be the point at which additional repeats 
only provide marginal reductions in uncertainty(Apte et. al. (2017). The dynamic sampling 
algorithm accounts for different locations requiring different numbers of repeat measurements 
to achieve this in order to optimize the use of monitoring resources.  More detail on the 
algorithm can be found in the Aclima Mobile Measurement Quality Assurance System, Section 
3.1).  

2 Air Toxics measured by the SMMI Partner Mobile laboratories may be used to generate ambient 
concentration estimates. 
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Drive passes identified  as influenced by self-pollution (Section 2.2) are not included as part of 
the pass count.  
 

5.0 Validation of segment aggregate concentration estimates  

The unique value of hyperlocal maps resulting from mobile mapping also makes validation 
difficult as independent data at this spatial resolution are not available for comparison. To 
address this, we have developed a variety of approaches to validate the performance of our 
ambient concentration estimates.  This section presents the results of these approaches using 
historical data aggregated to a 100-m road segment spatial aggregate. 

5.1 Validation by comparison with regulatory measurements 

Quantifying uncertainty at the device level is a key piece in understanding data quality of the 
hyperlocal maps, but the uncertainties do not necessarily propagate in a straightforward way to 
the final data products. For this reason, Aclima’s approach is to compare our mobile 
measurements to stationary measurements (e.g., regulatory reference) where those data are 
available in order to directly quantify uncertainty against the traditional, established methods 
for measuring ambient concentrations of pollutants over time. In regions where a suitable 
number of reference sites are available, the mobile-to-stationary comparisons can provide 
basic statistics to describe uncertainty broadly across the mapping region, extrapolating to 
locations where reference sites do not exist.  
 
We have taken two approaches to map evaluation based on regulatory sites. These include, (1) a 
time-resolved approach where individual segment pass means are compared with the 
appropriate hourly averaged data (Section 5.1.1) and, (2) a time-integrated approach where 
ambient concentration estimates are compared with the median value reported by the station 
over the same time period (Section 5.1.2). The first approach is an extension of the device-level 
data quality evaluation, but allows for an aggregation of bias across all devices contributing to 
the hyperlocal map. Additionally, it allows for a determination of inter-network differences that 
could result from, for example, systematic differences in the calibration sources used or 
differences between different measurement techniques (i.e. optical particle detection vs 
gravimetric detection of PM2.5). The second approach provides a quantification of overall 
uncertainty of the final typical concentrations, including device-level uncertainty, sampling 
uncertainty, and uncertainty resulting from the modeling approach used to produce the 
ambient concentration estimates. The results reported here are based on mobile mapping 
conducted across California between 2019 and 2021 and use the regulatory data reported to 
California Air Quality Management District’s Air Quality Monitoring Information System (CARB 
AQMIS) over the same time period. As Aclima continues to map in more regions, we expect to 

 
© Aclima 2022 Patented & Patents Pending | Trade Secret & Proprietary Business Information ​ 13 

  



Community Air Monitoring Plan: Appendix D (v2.1)  
Statewide Mobile Monitoring Initiative 
 
refine these uncertainty estimates and determine how relevant these results are for other 
locations, including areas with a limited existing air quality measurement network. 
 
Regulatory site measurements can be spatially representative over scales of several meters to 
several kilometers, depending on the site type as defined by USEPA (page 5). However, direct 
comparisons between mobile measurements and regulatory site measurements can be 
complicated due to the fact that mobile measurements represent on-road conditions, having 
high variability across different road types. As a result, it is important to consider the spatial 
and temporal aggregation scales as well as the maximum allowable distance between 
stationary and mobile concentrations, which we will refer to as the distance buffer in the 
following discussion.  
 
Previous in-depth analysis (Whitehill et al., 2024, LaFranchi et al., 2022, Solomon et al., 2020) 
has shown that the key to making a meaningful comparison between mobile and stationary 
measurements is to reduce random noise in the comparison due to atmospheric variability by 
maximizing the number of collocation samples while minimizing the distance buffer and 
filtering out high variability road types (e.g. highways). Given sufficient collocation samples 
within a small radius, it is possible to accurately characterize bias between on-road 
measurements (both time-resolved and time-integrated) and a stationary reference network. 
While we have found (Whitehill et al., 2024) that there can be high degrees of correlation 
between mobile and stationary measurements even at distance buffers of 3-5 km, we choose to 
use a radius of 250m for this evaluation to reduce the likelihood of spatial variability influencing 
the results. 

5.1.1 Time resolved comparison of mobile sensor measurements to regulatory measurements 

To evaluate the quality of AMN measurements on a day to day basis, Aclima compared single 
pass mean segment data for PM2.5, NO2, O3, and CO collected within a 250 m radius around a 
regulatory site to the data reported by that site. The single pass mean concentrations 
measured within this radius for each pollutant were averaged to 24 hours across all devices and 
sites and compared to the daily mean of the measurements from the regulatory site for the 
hours when the car was within the distance buffer. For instance, if the car was near the site in 
the 10 AM, 2 PM, and 11 PM hours, only the corresponding data from the same hours was used 
from the regulatory site. Note that more than one vehicle/device may be part of the comparison 
for any given day, and the overall temporal comparison will certainly be made up of data from 
multiple cars. This comparison provides an indication of the general quality of the AMN device 
data in situ and across many devices, as well as insight about the value of data aggregated over 
different spatial and temporal scales.  
 
For this evaluation, we focus on data collected in the Bay Area Air Quality Management District 
(BAAQMD) region. The data from all cars and relevant sites in the region (i.e. the sites reported 
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measurements for the pollutant and had roads within 250 m of the site) were averaged 
together for a network-wide assessment. The number of regulatory sites used in the 
comparison ranged from 14 to 17 depending on the pollutant. Figure 5 presents time series and 
regression analysis for PM2.5, NO2, O3, and CO for the daily average values. Excellent daily 
average temporal agreement (R2 > 0.9) with little bias (<8%) is observed for PM2.5 and O3. 
Agreement for NO2 and CO is slightly reduced (R2 >0.65) with a bias of less than 20% for both. 
These results are comparable to other more direct estimates of device-level data quality from 
our pre- and post-deployment calibration audits as well as from an independent side-by-side 
collocation study at the Laney College monitoring site in Oakland, CA.  
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Figure 5. Comparison of daily mean mobile sensor (M) measurements within a 250 m radius circle 
centered at a stationary regulatory site to daily mean hourly data at that regulatory site (S). Data for all 
mobile platform measurements within 250 m of a regulatory site are compared to that regulatory site 
within the baseline period. Daily time series (left column) and recession analysis with regression statistics 
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(right column) are presented for A) PM2.5 [µg/m3]; B NO2 [ppb]; C) O3 [ppb]; and D) CO [ppm]. A Type II - 
Major Axis regression was used with no weighting. 
 
These results, in relation to FRM and FEM measurements of precisely known uncertainty at 
stationary regulatory sites, confirms that Aclima’s mobile platforms achieve high quality data at 
hyperlocal, block-by-block and community wide spatial scales with acceptable bias and very 
good temporal agreement. For example, based on an extensive literature search and 
international sensor workshops, the USEPA has developed a draft set of target values for air 
pollution sensors that measure PM2.5 and O3 (Williams et al., 2019; Duvall et al., 2020). 
Performance metrics reported (Duvall et al., 2021) included precision, bias and intercept, 
coefficient of determination (R2), and error (RMSE) for PM2.5 and O3. Aclima’s mobile sensor 
data quality objectives meet or exceed EPA’s performance guidance for PM2.5 and O3. USEPA 
has evaluated sensor performance for NO2, CO (Duvall et al. 2021) but has not formally 
summarized findings as done with PM2.5 and O3.  

5.1.2 Time integrated comparison of ambient concentration estimates to regulatory 
measurements 

To evaluate the overall performance of the Ambient Concentration Data Product, the ambient 
concentration estimates (ACE) at 100 m road segment aggregations within a 250 m radius of a 
regulatory site were compared to the annual median concentration from that regulatory site for 
each pollutant over the same date range of mobile monitoring collection (e.g. for an annual data 
collection, aggregating all data collected from June through May). (Note: BC is not included in 
this example analysis as there were not sufficient mobile BC measurements within 250 m of a 
regulatory station that also report BC.) Here we present an example of this evaluation using 
data collected throughout California, including the BAAQMD region as well as neighborhoods in 
San Diego, Sacramento, Los Angeles, and San Bernardino.  We perform this same analysis 
whenever we complete mapping. 
 
Table 2 presents several evaluation metrics for the combination of all regulatory sites and all of 
the data collected throughout California based on the observed differences (Dj,s) between each 
segment (s) and stationary site (j). This collection of Dj,s values are aggregated to calculate a 

mean ( ) and a standard deviation ( ) for each site. The evaluation metrics based on  are 𝐷
𝑗

σ
𝐷,𝑗

𝐷
𝑗

then defined as follows: 
 

●​ Mean Bias Error (MBE), which provides an estimate of systematic bias between our ACE 
and regulatory measurements 

  𝑀𝐵𝐸 = 𝑗=1

𝑁

∑ (𝐷
𝑗
)

𝑁
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●​ Mean Absolute Error (MAE), which provides an estimate of absolute bias between our 
ACE and regulatory measurements across all sites 

  𝑀𝐴𝐸 = 𝑗=1

𝑁

∑ ( 𝐷
𝑗

|||
|||)

𝑁
 

●​ Centered Root Mean Square Error (CRMSE), which is a bias-adjusted version of Root 
Mean Square Error, and provides an estimate of precision of the ACE values compared to 
regulatory measurements, where outlier differences are weighted more heavily.  

 𝑅𝑀𝑆𝐸  = 𝑗=1

𝑁

∑ (𝐷
𝑗
)

2

𝑁  

 𝐶𝑅𝑀𝑆𝐸  =  𝑅𝑀𝑆𝐸2 − 𝑀𝐵𝐸2

 
●​ Correlation Coefficient (R2), determined from a linear regression (OLS) between the 

mean ACE concentration around each site ( ) and the stationary median values for 𝐴𝐶𝐸
𝑗

each site, j, which provides a measure of the ability of the ACE map to reproduce the 
variance observed across the stationary network. 

●​ Standard Deviation ( ), which describes the variability at the segment level around σ
𝐷

each site, reflecting true local variability due to different road types and local sources as 
well as random precision uncertainty for ACE values at segment aggregations 

 σ
𝐷

= 𝑗=1

𝑁

∑ (σ
𝐷,𝑗

)

𝑁

 
Table 2: Performance metrics for comparison of map segment aggregates within 250 m of a 
regulatory site to that site for all regulatory site locations and baselines periods.  

 MBE  MAE  CRMSE  R2 σD 

PM2.5 +0.5 μg/m3 
(11%) 

1.7 μg/m3 
(23%) 

2.2 μg/m3 
(30%) 

0.40 0.8 μg/m3 

NO2 -0.2 ppb 
(-5%) 

1.7 ppb 
(30%/22%*) 

2.2 ppb 
(44%/28%*) 

0.77 2.0 ppb 

O3 +0.4 ppb 
(+2%) 

1.2 ppb 
(5%) 

1.4 ppb 
(6%) 

0.82 0.8 ppb 

CO +0.04 ppm 
(+15%) 

0.06 ppm 
(21%) 

0.07 ppm 
(25%) 

0.11 0.04 ppm 
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* NO2 % MAE and % CRMSE values are heavily influenced by several sites where NO2 concentrations are relatively low. When 
excluding sites with annual median concentration less than twice the CRMSE value, the % MAE and % CRMSE reduce to 22% and 
28%, respectively. 

 
The results in Table 2 can be interpreted as overall uncertainty for the ambient concentration 
estimates combining uncertainties across the entire platform, including device level, sampling, 
and modeling uncertainties. In order to help put these results in perspective, these metrics are 
also calculated as a percentage using relative differences for each site and compared to the 
uncertainty thresholds listed for different use cases according to the EPA Air Sensor Guidebook 
(Williams et al, 2014), as shown in Table 3. Bias (as MAE) ranges from 5% (O3) to 30% (NO2). 
Systematic bias (as MBE) is relatively low, ranging from -5% (NO2) to +15% (CO), indicating that 
most sources of uncertainty in the ACE data product are random. 
 
Precision (as CRMSE) ranges from 6% (O3) to 44% (NO2). As a percent, NO2 bias and precision 
are somewhat high (~30-45%), however, this is driven by high relative uncertainties at several 
sites where annual median concentrations are less than 5 ppb. Excluding these low NO2 sites, 
the % precision and bias are both <30%. The Hotspot Identification (Tier II)  use case for all 4 
criteria pollutants is achievable. For O3, the % bias and % precision are low enough to be used 
for the Supplemental Monitoring use case (<20%).  
 
Table 3: Adapted from the EPA Air Sensor Guidebook (Williams et al., 2014), showing the 
different tiered use cases for sensors according to precision and bias uncertainty alongside the 
ACE Data Product modalities suitable for each tier.  Tiers where the ACE data products do not 
support the use case are listed as not applicable (NA). 

Tier Use Case Precision and Bias 
Uncertainty 

ACE Data Product Modalities 

I Education and Information <50% NO2, O3, PM2.5, CO 

II Hotspot Identification and 
Characterization 

<30% NO2*, O3, PM2.5, CO 

III Supplemental Monitoring <20% O3 

IV Personal Exposure <30% NA 

V Regulatory O3 (<7%) 
PM2.5 (<10%) 
NO2 (<15%) 
CO (<10%) 

NA 

* In locations where NO2 ACEs are higher than ~5 ppb. 
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In order to further illustrate the comparisons between ACE concentrations and the stationary 
site concentrations, Figure 6 shows the scatter plot between ACE and stationary sites, with 
error bars in the figure representing  for the collection of segments around each  value. σ

𝐷,𝑗
𝐴𝐶𝐸

𝑗

The best fit lines shown are ordinary least squares fit to the data. as a function of the median 
regulatory site concentration. The correlations from these plots between the data are shown in 
Table 5 as R2 calculated using ordinary least squares. In addition, the standard deviation for the 
set of segments around each location are also displayed around each segment mean value as a 
measure of segment to segment variability around each site.  
 

 

 
 
Figure 6. Comparison of the baseline annual mean segment concentration within 250 m from the 
regulatory site annual median for each site for which a comparison was possible for (A) PM2.5 (µg/m3), (B) 
NO2 (ppb), (C) O3 (ppb), and (D) CO (ppm). The standard deviation of the set of segments within the 250 
m radius that comprise the mean are shown as error bars around the mean value. The trend line is the 
result from an OLS linear fit to the data. 
 
The figures show general agreement with the trend line, with O3 and NO2 showing strong 
correlations, with R2 of approximately 0.8 for both, while CO has poor correlation (R2 = 0.1) and 
PM2.5 has moderate correlation (R2 = 0.4). The precision uncertainty (as CRMSE) for CO is 
approximately the same order of magnitude (0.07 ppm) as the standard deviation of CO 
concentrations observed across all of the regulatory sites used in this analysis. Similarly, PM2.5 
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variability across the sites used in the analysis is relatively small (2.6 ug/m3) compared to the 
CRMSE of 2.2 ug/m3. As a result, the R2 values for both CO and PM2.5 likely do not reflect the 
true performance that would be found in comparison with stationary networks capturing a 
wider range of concentrations. As Aclima continues to collect data in more diverse locations, we 
will continue to refine these uncertainty estimates and improve confidence that they are 
generalizable to more locations. 
 
This analysis is not currently possible for CH4, CO2, C2H6, and BC because of data availability for 
these pollutants at suitable stationary sites in locations that Aclima has mapped to date. 

5.2 Accounting for Systematic Measurement Bias 

In the examples provided in Section 5.1, the bias between the Ambient Concentration Estimates 
and existing regulatory measurements was relatively low for all pollutants evaluated. While a 
robust and well-executed measurement quality assurance system is key to minimizing this 
systematic bias, the possibility for significant bias is always a possibility when comparing two 
different measurement networks operated by different organizations using different primary 
standards, detection methods, and levels of data quality. We continue to assess Aclima sensor 
performance compared to different reference equipment, with an ongoing program of research 
and development to understand how accuracy varies in different locations with varying 
pollution sources and concentrations, meteorology, and other factors.  Sensors in the platform 
not routinely compared directly to a reference method (CO, PM2.5, and Black Carbon) as part 
of its standard calibration procedure may be particularly prone to systematic bias. 
 
In addition to the approach described in Section 5.1.1 of using time-resolved comparisons 
between mobile and regulatory measurements to evaluate the quality of AMN measurements, 
direct collocations of Aclima’s AMN and associated sensors at existing monitoring sites is an 
additional approach that can be used to increase confidence in the characterization of sensor 
bias. In addition, this approach can help identify any time-dependent correlations with the 
degree of bias that might be missed from the mobile vs stationary comparisons (i.e. seasonal, 
time of day, with varying meteorological conditions etc.) as well as provide valuable context for 
interpreting bias resulting from the fleet-wide comparisons of mobile measurements to 
stationary measurements. 
 
At the end of a measurement period for the ambient concentration estimates, Aclima has the 
option to use these in situ comparisons to adjust for systematic bias in certain cases.  This 
process helps to better harmonize Aclima’s measurements with existing measurement 
networks, which are usually the best source of truth for a given pollutant. While this approach 
may be applied to any pollutant, a typical scenario where this is expected to be necessary is for 
PM2.5. The parameters used in the sensor model that converts Aclima’s particle count 
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measurements to PM2.5 have been found to vary across different geographies, attributed to 
differences in size distribution and chemical composition of the ambient aerosol in these 
locations. Additionally, there are known sources of bias even between different approved 
(Federal Equivalent Methods or FEM) regulatory methods for measuring PM2.5, and Aclima’s 
PM2.5 sensor has been found to have different degrees of systematic bias when compared to 
different FEM methods of measuring PM2.5. In cases where these sources of systematic bias 
are deemed to be significant, the in situ comparisons are used to derive the optimal set of 
parameters to apply for a particular geographic location prior to generating the final ambient 
concentration estimates. 

5.3 Additional validation of model-generated ambient concentration estimates 

Aclima’s modeling strategies are validated through a number of approaches. In addition to the 
comparisons with stationary monitors described above, we employ a series of test scenes to 
assess the ability of a model to capture specific types of intrinsic spatial and temporal features 
in air pollution concentrations, such as sharp spatial gradients in concentrations. We 
additionally use self-contained validation strategies for calculating errors with subsets of the 
measurements against model predictions, as well as for assessing model stability. 

5.3.1 Evaluation using test scenes 

We test our models against a series of test scenes, much like vicarious calibration of remote 
sensing systems against targets with known, constant surface reflectance. We consider the 
model as encompassing both the sampling strategy (the true trajectories and measurement 
times from our fleet in the region) as well as the algorithms for estimating concentrations since 
these are naturally coupled. These test scenes are not meant to capture the full complexity of 
the atmosphere and resulting patterns in pollutant concentrations. Instead, they are 
intentionally selected to stress test a model against specific observable features in a repeatable 
manner. These test scenes enable calculation of the effective resolution of the model against a 
broad set of signals.  

5.3.2 Self-contained validation strategies 

Self-contained validation strategies use subsets of the measurement against model prediction 
to calculate errors, and can also be used for assessing model stability.  Our self-contained 
validation strategies include internal goodness of fit, parameter sensitivity training, out of 
sample validation, and validation against third party data. 
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